Pingli Qin | Photovoltaic device | Best Researcher Award

Prof. Dr. Pingli Qin | Photovoltaic device | Best Researcher Award

Prof. Dr. Pingli Qin, Wuhan Institute of Technoglogy, China

Prof. Dr. Pingli Qin is a distinguished researcher in optical functional materials and solar cell devices, currently serving as a faculty member at Wuhan Institute of Technology. With over 90 SCI publications, including first-author papers in Advanced Materials and Energy & Environmental Science, she has made significant contributions to sustainable energy research. Recognized among the World’s Top 2% Scientists (Stanford List, 2020-2024), she actively mentors students, leading them to national and provincial competition victories. Her research spans organic and perovskite photovoltaic cells, with multiple granted patents. She also holds editorial roles and serves on university academic committees. πŸ“šπŸ”¬

Publication Profile

Scopus

πŸŽ“ Education

Prof. Qin earned her doctoral degree in materials science, specializing in optical functional materials and photovoltaic devices. Her academic journey includes extensive research in thin-film technology, semiconductor materials, and nanocomposites. She has been awarded prestigious postdoctoral fellowships, including the Special Postdoctoral Science Foundation of China and the General Postdoctoral Science Foundation of China. Her work in perovskite and organic solar cells has been widely recognized, leading to major research grants from national and provincial scientific bodies. She continues to contribute to the advancement of sustainable energy solutions through innovative research and high-impact publications. πŸŽ“πŸ”¬

πŸ‘©β€πŸ« Experience

With a strong academic and research background, Prof. Qin has dedicated her career to advancing solar cell technologies and optical functional materials. As a faculty member at Wuhan Institute of Technology, she has played a pivotal role in both research and teaching, mentoring students who have won multiple national and provincial awards. She has contributed significantly to applied materials science, securing numerous competitive research grants. Her editorial work and committee roles further highlight her leadership in academia, ensuring high-quality scientific advancements in photovoltaic and energy materials research. Her collaborations extend across industry and academia globally. πŸ“–πŸ”¬

πŸ† Awards & Honors

Prof. Qin’s excellence in research and innovation has been recognized with numerous awards, including the 1st Prize in the Provincial Scientific Progress Award and the 3rd Prize in the Natural Science Award. Her groundbreaking contributions to photovoltaic materials earned her a spot among the World’s Top 2% Scientists (Stanford List, 2020-2024). She has successfully led students to win five national and sixteen provincial competition awards. In addition, her work has been acknowledged through multiple high-impact research grants, committee memberships, and editorial roles, establishing her as a leader in sustainable energy research. πŸ…πŸ”¬

πŸ” Research Focus

Prof. Qin specializes in optical functional materials and solar cell devices, with a particular emphasis on organic and perovskite photovoltaic cells. Her research explores innovative materials such as Crβ‚‚O₃, MoO₃/MoSβ‚‚ composites, and Cu:CrOβ‚“ thin films for enhancing photovoltaic performance. With over 8,767 citations and an h-index of 42, her work has significantly impacted renewable energy technologies. She actively contributes to the advancement of thin-film solar cells, nanostructured materials, and energy-efficient electronic devices, pushing the boundaries of sustainable energy solutions through groundbreaking research and patented innovations. βš‘πŸ”¬

 

Publication Top Notes

  • πŸ“„ Eco-friendly small molecule with polyhydroxyl ketone as buried interface chelator for enhanced carrier dynamics toward high-performance perovskite solar cellsRui Wu, Bingxin Ding, Shuping Xiao, Xiangbai Chen, Pingli QinScience China Materials, 20250 Citations πŸ“š

  • πŸ“– Review on the Application of SnO2 in Perovskite Solar CellsLiangbin Xiong, Yaxiong Guo, Jian Wen, Pingli Qin, Guojia FangAdvanced Functional Materials, 2018544 Citations πŸ†

  • πŸ“˜ Tin oxide (SnO2) as effective electron selective layer material in hybrid organic–inorganic metal halide perovskite solar cellsGuang Yang, Pingli Qin, Guojia Fang, Gang LiJournal of Energy Chemistry, 201845 Citations ⚑

  • πŸ“‘ Effective Carrier-Concentration Tuning of SnO2 Quantum Dot Electron-Selective Layers for High-Performance Planar Perovskite Solar CellsGuang Yang, Cong Chen, Fang Yao, Yanfa Yan, Guojia FangAdvanced Materials, 2018376 Citations πŸš€

  • πŸ“• Stable and Efficient Organo-Metal Halide Hybrid Perovskite Solar Cells via Ο€-Conjugated Lewis Base Polymer Induced Trap Passivation and Charge ExtractionPingli Qin, Guang Yang, Zhiwei Ren, Jianhui Hou, Gang LiAdvanced Materials, 2018275 Citations 🌿

  • πŸ“™ Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cellsHong Tao, Zhibin Ma, Guang Yang, Pingli Qin, Guojia FangApplied Surface Science, 201850 Citations πŸ§ͺ

 

 

Roghayeh Gavagsaz-ghoachani | Photovoltaic system | Best Researcher Award

Assoc. Prof. Dr. Roghayeh Gavagsaz-ghoachani | Photovoltaic system | Best Researcher Award

Assoc. Prof. Dr. Roghayeh Gavagsaz-ghoachani, Shahid Beheshti University, Iran

Assoc. Prof. Dr. Roghayeh Gavagsaz-Ghoachani is an expert in Electrical Engineering, with a Ph.D. from the University of Lorraine, France. She has earned several awards, including the ICOME 2024 and ELECTRIMACS 2019 Best Paper Prizes. Dr. Gavagsaz-Ghoachani has published 47 journal papers and 136 conference papers. Currently, she serves as an Associate Professor at Shahid Beheshti University, Iran. Her research focuses on photovoltaic systems, DC microgrids, and power electronics. She is a reviewer for prominent journals like IEEE Transactions on Power Electronics. πŸŒπŸ“šπŸ”‹πŸ“‘πŸ’‘

 

Publication Profile

Orcid

Education πŸ“šπŸŽ“

Assoc. Prof. Dr. Roghayeh Gavagsaz-Ghoachani is a highly qualified Electrical Engineering expert. She earned her Ph.D. in Electrical Engineering from the University of Lorraine, France, in 2012. Prior to that, she completed her M.Sc. in Electrical Engineering from Institut National Polytechnique de Lorraine, France, in 2007. She began her academic journey with a B.Sc. in Electrical Engineering from Ferdowsi University, Mashhad, Iran, in 1994. Dr. Gavagsaz-Ghoachani’s academic path reflects a strong foundation in electrical engineering, contributing to her extensive research and teaching career. πŸŒπŸ”ŒπŸ’‘

 

Awards and Recognition πŸ†πŸŽ–οΈ

Assoc. Prof. Dr. Roghayeh Gavagsaz-Ghoachani has received numerous accolades for her outstanding contributions to Electrical Engineering. She was honored with the ICOME 2024 Best Paper Prize and the EVER 2013 Best Paper Prize, recognizing her excellence in research. In 2021, she received the ICREDG Best Paper Prize, followed by another ICREDG Best Paper Prize in 2019. Dr. Gavagsaz-Ghoachani also earned the ELECTRIMACS 2019 Best Paper Prize for her impactful work in the field. These prestigious awards highlight her significant academic achievements and contributions to the engineering community. πŸŒŸπŸ“„πŸ”¬

 

Professional Experience πŸ‘©β€πŸ«πŸŒ

Assoc. Prof. Dr. Roghayeh Gavagsaz-Ghoachani has an impressive academic career spanning multiple prestigious institutions. Since January 2016, she has served as an Associate Professor at Shahid Beheshti University in Iran, where she continues to contribute significantly to the field of Electrical Engineering. Prior to this, from 2012 to 2016, she worked as a Postdoctoral Researcher at the renowned UniversitΓ© de Lorraine in France. Her diverse professional experiences across both academic and research environments have greatly enriched her expertise and helped shape her distinguished career. πŸ«πŸ”¬πŸ’Ό

 

Research Focus

Roghayeh Gavagsaz-Ghoachani is a researcher with a strong focus on power electronics, control systems, and renewable energy applications. Her work includes control techniques for DC microgrids, modular converters, photovoltaic systems, and fuel cell applications. She has contributed to advancements in voltage regulation, energy efficiency, and the development of robust control systems for power converters, including the use of nonlinear observers and flatness-based control. Her research also delves into educational innovations, such as video-on-demand learning in engineering. πŸ”‹βš‘πŸ“šπŸ”§πŸ“‘

 

Publication Top Notes

  • Decentralized Control of DC Microgrids Using Interconnection and Damping Assignment Passivity-Based Control Technique: Experimental Verification
    IEEE Access
    2024 | Journal article
    DOI: 10.1109/ACCESS.2024.3463690
  • Enhancement of the Commandable Areas of a Modular DC–DC Converter With Anti-Windup Synthesis in Fuel Cell Systems
    IEEE Access
    2024 | Journal article
    DOI: 10.1109/ACCESS.2024.3423456
  • Sustainable Education for Sustainable Future: Art of Storytelling for Enhancing Creativity, Knowledge Retention on the Acme of Successful Education
    IEEE Access
    2024 | Journal article
    DOI: 10.1109/ACCESS.2024.3432030
  • A fast and precise double-diode model for predicting photovoltaic panel electrical behavior in variable environmental conditions
    International Journal of Ambient Energy
    2023-12-31 | Journal article
    DOI: 10.1080/01430750.2023.2173290
  • Revolutionizing Engineering Education: Exploring Experimental Video-on-Demand for Learning
    International Journal of Engineering Pedagogy (iJEP)
    2023-10-25 | Journal article
    DOI: 10.3991/ijep.v13i7.41683
  • Robust Flatness-Based Control With Nonlinear Observer for Boost Converters
    IEEE Transactions on Transportation Electrification
    2023-03 | Journal article
    DOI: 10.1109/TTE.2022.3192217
  • Cascaded Controller for Controlling DC Bus Voltage in Mismatched Input Powers
    IEEE Transactions on Power Electronics
    2022-11 | Journal article
    DOI: 10.1109/TPEL.2022.3186233
  • Operating Mode Analysis of a Modular Converter: Experimental Validation
    IEEE Transactions on Industry Applications
    2022-07 | Journal article
    DOI: 10.1109/TIA.2022.3171527