Dr. Jiqing Wang | Engineering | Research Excellence Award
Beihang University School of Electronic and Information Engineering | China
30
25
20
15
10
5
0
29
7
4
■ Documents
■ h-index
Featured Publications
– Conference Paper
Beihang University School of Electronic and Information Engineering | China
30
25
20
15
10
5
0
Effat University | Saudi Arabia
Assoc. Prof. Dr. Abdulaziz Almaktoom, is a distinguished scholar and leader in Operations and Supply Chain Management, serving as Associate Professor and Chair of the Business Administration Department. With 39 publications, 275 citations, and an h-index of 10, he is recognized among the top 20 scientists in Decision Science and Operations Management in Saudi Arabia. His expertise spans operations management, project management, data analytics, industrial ergonomics, lean and six sigma, quality assurance, risk management, and applied statistics. He has pioneered innovative curriculum development, establishing specialized programs and securing full accreditation from NCAAA and AACSB. Renowned for mentoring students, leading cross-functional teams, and driving industry collaborations, he combines research excellence with impactful teaching. His strategic vision has enhanced academic standards, tripled student enrollment, and supported students’ success, while his consultancy and professional certifications underscore his commitment to advancing operational efficiency, research innovation, and applied solutions across industry and academia.
Profile: Scopus | Orcid | Google Scholar
Merabet, A., Saighi, A., Saad, H., Ferradji, M. A., Laboudi, Z., & Almaktoom, A. T. (2025). AI for colon cancer: A focus on classification, detection, and predictive modeling. International Journal of Medical Informatics, 106115.
Almaktoom, A. T., & Yusuf, N. (2025). Optimizing forecasting techniques for cost-effective procurement of controlled medications in Saudi Arabia’s healthcare system. International Journal of Pharmaceutical and Healthcare Marketing.
Almaktoom, A. T. (2025). Resilience modeling of mobile service for quality assurance. Operations Management Research, 18(1), 182–194.
Sasikumar, A., Ravi, L., Devarajan, M., Selvalakshmi, A., & Almaktoom, A. T. (2024). Corrections to “Blockchain-Assisted Hierarchical Attribute-Based Encryption Scheme for Secure Information Sharing in Industrial Internet of Things.” IEEE Access, 12, 163197–163197.
Bezoui, M., Kermali, A., Bounceur, A., Qaisar, S. M., & Almaktoom, A. T. (2024). Deep reinforcement learning for multiobjective scheduling in Industry 5.0 reconfigurable manufacturing systems. In Machine Learning for Networking: 6th International Conference, MLN 2023
Wake Forest University School of Medicine | United States
Dr. Qing Lyu is a highly accomplished researcher in biomedical engineering and AI-driven medical imaging, with a strong track record of innovation and scholarly impact. He holds a B.S. and M.S. in Biomedical Engineering from Shanghai Jiao Tong University and a Ph.D. from Rensselaer Polytechnic Institute, where his dissertation focused on deep neural networks for MRI applications. Currently, he serves as Assistant Professor in Radiology and Adjunct Assistant Professor in Biomedical Engineering at Wake Forest University School of Medicine. Dr. Qing Lyu’s research spans MRI and CT super-resolution, multimodal radiomics, deep learning for disease prediction, and AI-based clinical translation. His scholarly output includes 14 documents indexed in Scopus, accruing 594 citations and an h-index of 8, reflecting both quality and influence. He holds multiple patents, has secured competitive grants, and serves on editorial boards while reviewing for top journals and conferences, underscoring his leadership in advancing biomedical imaging, AI, and translational medical research.
Profile: Scopus | Google Scholar
Lyu, Q., Tan, J., Zapadka, M. E., Ponnatapura, J., Niu, C., Myers, K. J., Wang, G., … & Whitlow, C. (2023). Translating radiology reports into plain language using ChatGPT and GPT-4 with prompt learning: Results, limitations, and potential. Visual Computing for Industry, Biomedicine, and Art, 6(1), 9.
Lyu, Q., Shan, H., Steber, C., Helis, C., Whitlow, C., Chan, M., & Wang, G. (2020). Multi-contrast super-resolution MRI through a progressive network. IEEE Transactions on Medical Imaging, 39(9), 2738–2749.
Lyu, Q., Shan, H., & Wang, G. (2020). MRI super-resolution with ensemble learning and complementary priors. IEEE Transactions on Computational Imaging, 6, 615–624.
Lyu, Q., & Wang, G. (2022). Conversion between CT and MRI images using diffusion and score-matching models. arXiv preprint arXiv:2209.12104.
Niu, C., Li, M., Fan, F., Wu, W., Guo, X., Lyu, Q., & Wang, G. (2022). Noise suppression with similarity-based self-supervised deep learning. IEEE Transactions on Medical Imaging, 42(6), 1590–1602.
National Tsing Hua University | Taiwan
Prof. Yuh-Ming Ferng, a distinguished Professor at the Department of Engineering and System Science, Institute of Nuclear Engineering and Science, National Tsing Hua University (NTHU), has made significant contributions to nuclear engineering through his extensive research and academic leadership. He earned his B.S. and Ph.D. in Nuclear Engineering from NTHU, where his doctoral thesis focused on the numerical simulation of the rewetting process. With a professional career spanning over three decades, Prof. Yuh-Ming Ferng has held roles as Assistant, Associate, and Full Professor at NTHU, alongside senior research positions at its Nuclear Science and Technology Development Center and the Center for Energy and Environmental Research, as well as the Institute of Nuclear Energy Research. His research expertise covers nuclear reactor safety, severe accident analysis, CFD turbulence modeling, two-phase flow, thermal management, fuel cell simulation, and renewable energy systems. With 2,470 citations, 168 documents, and an h-index of 30, he is a highly impactful researcher in his field.
Profile: Scopus
Ferng, Y.-M., & co-authors. (2026). Determining minimum site area for deep geological repository of spent fuels using thermal simulations. Annals of Nuclear Energy. Advance online publication.
Ferng, Y.-M., & co-authors. (2025). Thermal management design for the Be target of an accelerator-based boron neutron capture therapy system using numerical simulations with boiling heat transfer models. Processes. Advance online publication.
Ferng, Y.-M., & co-authors. (2024). Development of thermal-hydraulic coupling model for deep-geological disposal of high-level radioactive wastes. Nuclear Engineering and Design.
Ferng, Y.-M., & co-authors. (2024). Numerical model for noise reduction of small vertical-axis wind turbines. Wind Energy Science.
Ferng, Y.-M., & co-authors. (2024). Numerical prediction of the aerodynamics and aeroacoustics of a 25 kW horizontal axis wind turbine. Journal of Mechanics.
ISEP | France
Mr. Xun Zhang is a distinguished scholar specializing in embedded systems and wireless communication, currently serving as Professor at ISEP and permanent researcher at Saclay-Versailles University. He earned his MSc from Sorbonne University in 2005, PhD in Electrical Engineering from the University of Lorraine in 2009, and completed his Thesis Habilitation in Optical Wireless Communication at Sorbonne University in 2021. His career includes appointments as visiting professor at Tsinghua University, China, and De Vic University, Spain, along with postdoctoral research at Centralesupélec, Rennes. A senior member of IEEE, he has contributed extensively to the academic community as Associate Editor of IEEE Transactions on Broadcasting, Guest Editor for MDPI Sensors, Editor-in-Chief of the International Journal of Internet of Things, and organizer of major IEEE conferences including BMSB and ISCAS. He has supervised numerous postdoctoral researchers and PhD students on cutting-edge topics such as visible light communication, 6G IoT networks, indoor localization, and AI-driven optical systems. Recognized with awards including the Vivatech Innovation Award and supported by a French government PhD scholarship, his research continues to shape the future of IoT, 5G/6G, and optical communication technologies.
Profile: Google Scholar
Ding, W., Yang, F., Yang, H., Wang, J., Wang, X., Zhang, X., & Song, J. (2015). A hybrid power line and visible light communication system for indoor hospital applications. Computers in Industry, 68, 170–178.
Song, J., Ding, W., Yang, F., Yang, H., Wang, J., Wang, X., & Zhang, X. (2014). Indoor hospital communication systems: An integrated solution based on power line and visible light communication. In 2014 IEEE Faible Tension Faible Consommation (FTFC) (pp. 1–6). IEEE.
Shi, L., Shi, D., Zhang, X., Meunier, B., Zhang, H., Wang, Z., Vladimirescu, A., Li, W., … (2020). 5G Internet of radio light positioning system for indoor broadcasting service. IEEE Transactions on Broadcasting, 66(2), 534–544.
Kaloxylos, A., Gavras, A., Camps Mur, D., Ghoraishi, M., & Hrasnica, H. (2021). AI and ML–Enablers for beyond 5G networks. IEEE Communications Standards Magazine, 5(2), 12–18.
Malik, B., & Zhang, X. (2015). Solar panel receiver system implementation for visible light communication. In 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS) (pp. 249–252). IEEE.
Dr. Jungsoo Nam | Korea Institute of Industrial Technology | South Korea
Dr. Jungsoo Nam is a distinguished researcher in mechanical engineering, specializing in advanced manufacturing, precision machining, and nanotechnology applications. He earned his Ph.D. in Mechanical Engineering from Sungkyunkwan University, focusing on micro-drilling processes using nanofluids, after completing his undergraduate studies in Mechanical System and Design Engineering at Seoul National University of Science and Technology. Currently serving as Principal Researcher at the Korea Institute of Industrial Technology (KITECH), he has led pioneering projects in hybrid 3D printing, cryogenic machining, additive manufacturing, and carbon fiber reinforced plastics machining. His international research exposure includes a tenure as a Research Scholar at Purdue University, where he contributed to innovative developments in atomization-based spray coating and sensor fusion systems. Recognized with numerous prestigious honors such as the Young Researcher Award at PRESM, KITECH Best Researcher Award, and multiple best paper awards from leading engineering societies, Dr. NamDr. Jungsoo Nam has established himself as a leader in precision engineering and smart manufacturing technologies.
Dr. Jungsoo Nam pursued his academic journey in the field of mechanical engineering with a strong focus on advanced manufacturing processes and nanotechnology applications. He earned his Bachelor of Science in Mechanical System and Design Engineering from Seoul National University of Science and Technology in Seoul, Korea, where he laid the foundation for his expertise in precision engineering and system design. Building on this foundation, he advanced to graduate studies at Sungkyunkwan University in Suwon, Korea, where he successfully completed his doctoral degree in Mechanical Engineering. Under the mentorship of Dr. Sang Won Lee, his doctoral dissertation was titled “A Study on Characterization and Monitoring for Micro-Drilling Process Using Nanofluids,” reflecting his early commitment to pioneering research in machining processes and process monitoring. His academic background highlights a blend of strong theoretical knowledge and applied research, establishing a solid platform for his distinguished career in engineering innovation.
Dr. Jungsoo Nam has been widely recognized for his outstanding contributions to mechanical engineering and precision manufacturing through numerous prestigious honors and awards. His achievements include the Young Researcher Award at PRESM, multiple Best Paper Awards from the Korean Society for Precision Engineering, and the Korean Society of Mechanical Engineers Best Paper Award. At the Korea Institute of Industrial Technology, he was honored with both the Best Researcher Award and the President Award, reflecting his leadership and excellence in applied research. He has also received the KSPE Young Engineer Award, the Kistler Korea Technology Award, and the NAMRC Outstanding Paper recognition, further establishing his influence in the global research community. Early in his career, he earned the Graduate School Award for his dissertation with highest honors and was recognized for highly cited journal articles, including awards from the International Journal of Precision Engineering and Manufacturing. These accolades collectively highlight his innovation, impact, and sustained excellence in engineering research.
Dr. Jungsoo Nam has built an extensive research and professional career in the field of mechanical engineering with a focus on advanced manufacturing, precision machining, and smart technologies. He has been serving as Principal Researcher at the Korea Institute of Industrial Technology, where he has led projects on hybrid 3D printing, cryogenic machining, high productivity turning centers, and machining systems for carbon fiber reinforced plastics with innovative monitoring technologies. His international research exposure includes his tenure as a Research Scholar at Purdue University, where he contributed to atomization-based spray coating, sensor fusion, and development of advanced manufacturing systems. Prior to this, he worked as a Postdoctoral Research Associate at Sungkyunkwan University, advancing IoT-based machine tool prognostics and smart factory integration with cyber-physical systems. His early career as a Graduate Student Research Assistant involved groundbreaking work on environmentally friendly micromachining, nanofluid applications, and cryogenic machining technologies. Additionally, he served in the Republic of Korea Marine Corps, demonstrating discipline and leadership that continue to complement his research endeavors.
Dr. Jungsoo Nam’s research focus lies primarily in the fields of precision machining, advanced manufacturing processes, and sustainable engineering technologies. His work emphasizes micro-drilling, micro-grinding, and milling of difficult-to-machine materials such as titanium alloys and carbon fiber reinforced plastics, where he has pioneered the application of nanofluid minimum quantity lubrication to enhance machining efficiency and environmental sustainability. He has also contributed significantly to the integration of artificial intelligence, machine learning, and health monitoring systems in additive manufacturing and smart factory environments, enabling predictive diagnostics and real-time process optimization. His studies often address critical challenges in aerospace, automotive, and semiconductor applications, particularly through the development of environmentally friendly machining processes using nanodiamond particles, nano-solid lubricants, and cryogenic cooling. By bridging traditional machining with emerging smart technologies, Dr. Nam has established himself as a leader in sustainable precision engineering, ensuring high-quality manufacturing performance while reducing environmental impact and improving industrial competitiveness.
Experimental characterization of micro-drilling process using nanofluid minimum quantity lubrication
Year: 2011
Citations: 310
An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL)
Year: 2012
Citations: 286
Environmentally-friendly nano-fluid minimum quantity lubrication (MQL) meso-scale grinding process using nano-diamond particles
Year: 2010
Citations: 90
Optimization of environmentally benign micro-drilling process with nanofluid minimum quantity lubrication using response surface methodology and genetic algorithm
Year: 2015
Citations: 81
Machinability of titanium alloy (Ti-6Al-4V) in environmentally-friendly micro-drilling process with nanofluid minimum quantity lubrication using nanodiamond particles
Year: 2018
Citations: 76
Dr. Jungsoo Nam is a highly suitable candidate for the Research for Best Researcher Award. His consistent track record of impactful publications, innovative research contributions, and prestigious honors demonstrates excellence and leadership in his field. With minor improvements in global engagement, his potential for long-term influence remains exceptional.
Mr. Mehrdad Esmaeilipour, Aria Plasma Gostar Pars, Iran
Mr. Mehrdad Esmaeilipour is a results-driven Electronics Engineer with expertise in green technology and sustainable innovation. He currently serves as a Senior Electronics Engineer at Arya Plasma Gostar Pars Company, where he leads the development of advanced air and water purification systems. He is also the founder and CEO of Parsa Pardazesh Booshehr Sanaat Company (PPBS Co.), a successful electronics and IT firm empowering students and young professionals. Mehrdad holds degrees in Electronics Engineering Technology from Islamic Azad University and has authored multiple technical books in English. His notable inventions include a patented smart bracelet for the visually impaired and a cold plasma wastewater treatment system. He has published research in AI, robotics, and control systems, and has been recognized with international awards, including the Best Innovator Award (EBP 2025). As a mentor, speaker, and conference contributor, Mehrdad exemplifies the intersection of environmental sustainability, digital health, and industrial innovation.
Mr. Mehrdad Esmaeilipour possesses a strong academic foundation in electronics, beginning with a Diploma in Electronics from Azadegan Technical High School in 2006, which laid the groundwork for his technical skills and practical understanding of electrical systems. He further advanced his education by earning an Associate’s Degree in Electronics from Islamic Azad University in 2009, where he gained deeper insights into circuit design, microcontroller applications, and system troubleshooting. Demonstrating a commitment to academic and professional growth, he completed his Bachelor’s Degree in Electronics Engineering Technology from the same university in 2012. This program enriched his expertise in advanced electronics, control systems, and design methodologies, effectively equipping him with the theoretical and practical knowledge required for innovation in green technology, robotics, and digital systems. His educational journey has been instrumental in shaping his career as a pioneering engineer, entrepreneur, and inventor with a focus on industrial impact and environmental sustainability.
Mr. Mehrdad Esmaeilipour has demonstrated a robust and impactful professional journey across engineering, entrepreneurship, and mentorship. Since 2017, he has served as Senior Electronics Engineer at Arya Plasma Gostar Pars Company, where he leads the design and development of innovative circuits for air and water purification systems using cold plasma technology. His contributions include optimizing ICs, implementing quality control, and supporting environmental sustainability initiatives. Concurrently, as CEO and Engineer at Parsa Pardazesh Bushehr Sanat Company (PPBS Co.) since 2014, he has fostered technological innovation and employment through various projects such as cybersecurity implementation and telecommunication systems. He has mentored young talents and led cutting-edge installations across academic and commercial institutions. Moreover, Mehrdad has volunteered over 550 hours with the Robotics Team at Islamic Azad University, contributing to robotics circuit design, control systems, and prototype development. His work reflects strong leadership, technical expertise, and a commitment to industry transformation through sustainable technology.
Dr. Xiaolong Lu, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, China
Dr. Xiaolong Lu (b. Jan 21, 1994) is a materials scientist at the State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, CAS. He holds a Master’s in Chemical Engineering from Tianjin University and a Bachelor’s in Process Equipment from Qilu University of Technology. His expertise spans CVD, PVD, BET, and advanced tribological testing 🧪. Dr. Lu has published multiple papers on high-entropy coatings, nanostructured materials, and wear-resistant films in top-tier journals 📚. His research contributes significantly to aerospace and industrial lubrication technologies
Dr. Xiaolong Lu began his academic journey in Process Equipment and Control Engineering at Qilu University of Technology, where he earned his Bachelor’s degree (2012–2016) 🏫. He then advanced his expertise by pursuing a Master’s degree in Chemical Engineering at the prestigious Tianjin University from 2016 to 2019 🧪. Throughout his academic training, Dr. Lu developed a strong foundation in mechanical design, materials science, and engineering principles, which laid the groundwork for his future contributions to advanced materials and tribology research 🔬📘. His education has played a vital role in shaping his innovative research career.
Dr. Xiaolong Lu began his professional career at Sinohydro Foundation Engineering Co., Ltd from July to December 2019, gaining valuable industry experience in engineering projects 🏗️. In January 2020, he joined the prestigious State Key Laboratory of Solid Lubrication at the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences 🏛️. There, he has been deeply involved in cutting-edge research on advanced tribological materials and surface coatings 🔬. His work focuses on developing innovative solutions for wear resistance and lubrication, contributing significantly to the field of materials science and engineering.
Dr. Xiaolong Lu’s research centers on advanced tribological materials and high-entropy coatings for wear resistance and lubrication applications ⚙️🛡️. His work extensively explores high-entropy nitrides and carbonitrides, investigating their mechanical, structural, and tribological properties under varying conditions 🧪🔬. Using cutting-edge techniques like high power impulse magnetron sputtering and high-throughput preparation methods, Dr. Lu aims to enhance coatings for demanding environments such as aviation lubricants ✈️. His research contributes to developing innovative materials that improve durability and reduce friction in mechanical systems, supporting industrial and aerospace engineering advancements
Dr. Xiaolong Lu’s focused research on high-entropy coatings, tribological optimization, and advanced deposition techniques marks him as a valuable contributor to applied surface engineering. His combination of practical expertise, high-impact publications, and innovative methodology makes him a strong and deserving candidate for the Best Researcher Award.
Exploring atmospheric tribological properties of MoS2-(Cr, Nb, Ti, Al, V) composite coatings, Tribology International, 2021, cited by [–] 📅⚙️
Investigation of (CrAlTiNbV)Nx high-entropy nitride coatings for aviation lubricant, Applied Surface Science, 2021, cited by [–] 🧪✈️
Mechanical and tribological performance of (CrAlTiNbV)Nx nitride coatings in aviation lubricant, Ceramics International, 2021, cited by [–] 🏭🔧
Nanostructure, mechanical properties and tribological behavior of high-entropy carbonitrides coatings, Ceramics International, 2025, cited by [–] 🔬⚡
Effect of peak current on MoxN coatings microstructure and tribological behavior, Tribology International, 2023, cited by [–] ⚡🛠️
Characterization and wear role of (CrAlVTiNb)Nx high-entropy alloy nitride films, Journal of Alloys and Compounds, 2025, cited by [–] 🧱🔍
Comparative analysis of high-entropy nitrides and carbonitrides coatings over temperature range, Journal of Alloys and Compounds, 2025, cited by [–] 🌡️📊
Associate Professor, Dr. N.G.P Institute of Technology, India.
Mr. Mehrdad ghamari, Edinburgh Napier University, Edinburgh, United Kingdom
Mr. Ghamari holds a Master’s degree in Structural Engineering from the University College of Engineering, University of Isfahan, where he excelled with a GPA of 17.76 out of 20. His academic journey began with a Bachelor’s degree in Civil Engineering from the University of Tehran. His commitment to ongoing education is evident through his roles as a visiting researcher at renowned universities in the UK and Portugal.
Mr. Ghamari has actively engaged in multiple innovative research projects, focusing on topics such as photovoltaic integration for passive cooling applications and the effects of lateral constraints on historical masonry walls. His work is supervised by respected professors in the field, showcasing his ability to collaborate effectively and contribute to meaningful research. Notable projects include analyzing the structural integrity of Persian historical masonry and investigating the impact of advanced materials like fiber-reinforced polymers on traditional structures.
Mr. Ghamari has lectured on a range of subjects, including structural analysis and mechanics of materials, at various institutions. His ability to convey complex concepts to students reflects his deep understanding of the subject matter and his commitment to academic excellence
Mr. Ghamari has accumulated substantial practical experience in civil engineering. He has designed and supervised numerous concrete and steel structures in Iran and holds a license for supervision and implementation within the Construction Engineering Organization of Iran. His practical insights complement his academic prowess, making him a well-rounded candidate.
Mr. Mehrdad Ghamari’s extensive educational background, innovative research contributions, teaching experience, and practical engineering skills make him a highly suitable candidate for the Best Researcher Award. His commitment to advancing sustainable engineering practices and his contributions to the field demonstrate his potential to influence future developments in civil engineering and structural analysis.