Kemal Şahin | Human Computer Interaction | Best Researcher Award

Dr. Kemal Şahin | Human Computer Interaction | Best Researcher Award

Mimar Sinan Fine Arts University | Turkey

Dr. Kemal Şahin is an interdisciplinary researcher whose work bridges educational technologies, management information systems, user experience, and usability, with strong emphasis on comparative and applied research. His publications address three-dimensional printing technologies, responsive web design frameworks, learning management systems, air-quality visualization, parametric and coding-based design approaches, usability in mobile and web interfaces, and data-driven studies in education and digital media. His research demonstrates methodological rigor and relevance to both academic inquiry and practical implementation in design, technology, and education domains. The impact of his scholarship is reflected in being cited by 122 documents overall, with 81 citations since 2021, alongside an h-index of 5 (4 since 2021) and an i10-index of 3 (1 since 2021), indicating consistent scholarly influence.

Citation Metrics (Google Scholar)

140

105

70

35

0

Citations
122

h-index
5

i10-index
3


View Google Scholar Profile

Featured Publications

Comparative Analysis of Three-Dimensional Printing Technologies
– Journal of Strategic and Social Research, 2018 · Cited by 60

The Impact of Social Networks on Design Education
– Journal of Information Technology in Construction, 2012 · Cited by 5

Attitudes of Social Sciences Researchers Towards Statistical Software Packages
– Kastamonu Education Journal, 2020 · Cited by 4

Rounak Raman | Information Technology | Outstanding Scientist Award

Mr. Rounak Raman | Information Technology | Outstanding Scientist Award

Netaji Subhas University of Technology | India

Mr. Rounak Raman is an emerging researcher specializing in computer networking, IoT security, wireless sensor networks, AI-driven network management, and Generative AI. His scholarly contributions include CONTEXT-NET, a context-aware aggregation protocol for opportunistic networks, and ARMor-IoT, a trust-optimized mechanism enhancing IoT reliability, reflecting innovation in secure communication systems. He has also developed EAHCP, an energy-aware hybrid clustering protocol improving network lifetime, and HKRISRP, a hierarchical key-rotation framework for strengthened WSN security. His interdisciplinary work spans neurofeedback analytics, semantic search, YOLO-based computer vision, and enterprise generative AI tools. Overall, his research demonstrates strong technical depth, real-world impact, and a focus on secure, intelligent, and energy-efficient networked systems.

Citation Metrics (Google Scholar)

6
4
2
0

Citations
5

Documents
2

h-index
1

Citations

Documents

h-index

View Google Scholar Profile

Featured Publications

ARMor-IoT: Aggregated Reliable Mechanism for Optimized Trust in IoT
– International Conference on Artificial Intelligence and Its Application, 2025

Lingxin Jin | Computer Science | Best Researcher Award

Dr. Lingxin Jin | Computer Science | Best Researcher Award

Dr. Lingxin Jin, University of Electronic Science and Technology of China

Dr. Lingxin Jin, based in Chengdu, China, is a Ph.D. candidate in Software Engineering at the University of Electronic Science and Technology of China, where he also completed his Bachelor’s degree with a GPA of 3.8/4.0. His academic focus includes artificial intelligence, machine learning, network security, and software systems. Dr. Jin has gained international experience through an exchange program at the International Technological University in Silicon Valley and held internships involving front-end development and research on backdoor attacks against deep neural networks. His research contributions include publications in high-impact journals such as IEEE Transactions on Computers and the Journal of Circuits, Systems, and Computers, with additional submissions to ACM and IJCAI. Dr. Jin has worked on projects ranging from Linux shell simulations to public opinion analysis systems. He has received several scholarships and honors, including direct Ph.D. program recommendation, and is recognized for his promising research in AI security and adversarial attacks.

Publication Profile

Scopus

 Orcid

🎓 Educational Background

Dr. Lingxin Jin pursued his academic journey in Software Engineering at the University of Electronic Science and Technology of China. He completed his Bachelor’s degree from September 2018 to June 2022, achieving an impressive GPA of 3.8/4.0. During his undergraduate studies, he built a strong foundation through comprehensive coursework in Software Engineering, Computer Networks, Operating Systems, and Artificial Intelligence. Driven by academic excellence, Dr. Jin was recommended for direct entry into the Ph.D. program, which he began in September 2022. Currently, he is a Ph.D. candidate in Software Engineering at the same university, maintaining a GPA of 3.71/4.0. His advanced studies focus on cutting-edge topics such as Information Security Fundamentals and Frontiers, Network Security Theory and Technology, Machine Learning Theory and Algorithms, and Statistical Machine Learning. This academic background highlights his commitment to research and innovation in secure intelligent systems and computational technologies.

💼 Professional Experience

Dr. Lingxin Jin has gained diverse and valuable professional experience that complements his academic pursuits in software engineering and artificial intelligence. In July 2019, he participated in an exchange program at the International Technological University in Silicon Valley, where he engaged in programming robot motion manipulation using Raspberry Pi and Arduino, as well as composing songs using MATLAB—demonstrating his multidisciplinary creativity. From January to June 2021, Dr. Jin interned at Xi’an Deta Information Technology Co., where he focused on front-end development and contributed to building an opinion analysis system. This role honed his skills in UI/UX and real-time data interpretation. He later served as a Software Engineer Intern at Sichuan Meiliankai Science and Technology Co. from September 2021 to June 2022, where he conducted advanced research on backdoor attacks against deep neural networks. These experiences collectively reflect Dr. Jin’s technical versatility and growing expertise in cybersecurity and intelligent systems.

🏅 Additional Experience and Awards

Dr. Lingxin Jin has consistently demonstrated academic excellence throughout his educational journey, earning multiple awards and recognitions. During his undergraduate studies from 2018 to 2022 at the University of Electronic Science and Technology of China, he was honored with first and second-class scholarships for outstanding academic performance. His dedication and scholarly achievements earned him a prestigious recommendation for direct admission into the Ph.D. program, a distinction reserved for top-performing students. As a postgraduate student from 2022 onward, Dr. Jin continued to excel, receiving scholarships for new students as well as second-class scholarships for academic distinction. These accolades not only highlight his strong academic capabilities but also reflect his commitment to advancing in the field of software engineering and artificial intelligence. Dr. Jin’s consistent recognition at both undergraduate and postgraduate levels underscores his potential as a future leader in cutting-edge technological research and innovation.

🧠 Research Focus

Dr. Lingxin Jin’s research primarily focuses on adversarial machine learning, with a particular emphasis on Trojan attacks and security vulnerabilities in deep neural networks (DNNs). His scholarly work explores the life-cycle threats faced by DNNs, covering both attack strategies and defensive countermeasures. His publication in ACM Computing Surveys titled “Trojan Attacks and Countermeasures on Deep Neural Networks from Life-Cycle Perspective” provides a comprehensive overview of attack surfaces throughout a model’s development and deployment phases. Additionally, his work in IEEE Transactions on Computers, “Highly Evasive Targeted Bit-Trojan on Deep Neural Networks”, introduces novel methods of crafting stealthy, highly targeted Trojans that evade standard detection techniques. Through these contributions, Dr. Jin is advancing the field of AI security, focusing on the resilience and trustworthiness of neural networks in critical applications. His research is vital for developing robust defense frameworks and ensuring safe deployment of AI systems in real-world scenarios.

Publication Top Notes

  • 📄 2024: “Highly Evasive Targeted Bit‑Trojan on Deep Neural Networks” (IEEE Trans. on Computers) – DOI:10.1109/TC.2024.3416705; introduces stealthy bit-level Trojans; cited 2 times

  • 📄 2023: “Iterative Training Attack: A Black‑Box Adversarial Attack via Perturbation Generative Network” (J. of Circuits, Systems and Computers) – DOI:10.1142/S0218126623503140; black-box generative adversarial method;

  • 📄 2023: “A Survey of Trojan Attacks and Defense to Neural Networks” (under review at ACM Computing Surveys); comprehensive lifecycle review of Trojan threats

  • 📄 2024: “Data Poisoning‑based Backdoor Attack Framework against Supervised Learning Rules of Spiking Neural Networks” (submitted to IJCAI ’25); extends backdoor threats to spiking neural models

 

Rania Hamdani | Computer science | Best Researcher Award

Mrs. Rania Hamdani | Computer science | Best Researcher Award

Mrs. Rania Hamdani, University of Luxembourg, Luxembourg

Rania Hamdani is a research scientist specializing in operational research, data management, and cloud architecture for Industry 5.0. Based in Luxembourg, she is currently affiliated with the University of Luxembourg, where she explores advanced methodologies for integrating and managing heterogeneous data sources. She holds an engineering degree in Software Engineering and has extensive experience in software development, AI, and DevOps. Rania has worked on multiple industry and academic projects, publishing three research papers in Ontology-Driven Knowledge Management and Cloud-Edge AI. With a strong background in programming, cloud computing, and AI-driven solutions, she has contributed to platforms ranging from job recommendation systems to adaptive human-computer interaction systems. Her expertise includes Python, SpringBoot, Kubernetes, and Azure DevOps. She is also an active member of IEEE and other technical organizations, promoting innovation and knowledge-sharing in AI and cloud technologies. 🌍💻🔬

Publication Profile

Orcid

🎓 Education

Rania Hamdani holds an Engineering Degree in Software Engineering from the National Higher School of Engineers of Tunis (2021–2024), where she specialized in advanced design, service-oriented architecture, object-oriented programming, database management, and operational research. Prior to this, she completed a two-year preparatory cycle at the Preparatory Institute for Engineering Studies of Tunis (2019–2021), undertaking intensive coursework in mathematics, physics, and technology to prepare for engineering studies. She also earned a Mathematics-specialized Baccalaureate from Pioneer High School Bourguiba Tunis (2015–2019), graduating with honors. Throughout her academic journey, she gained expertise in artificial intelligence, machine learning, cloud computing, and DevOps methodologies. Her education provided a solid foundation in programming languages, data processing techniques, and full-stack development. Additionally, she holds multiple Microsoft certifications in Azure fundamentals, AI, data security, and compliance, reinforcing her expertise in cloud-based solutions and AI-driven applications. 📚🎓💡

💼 Experience

Rania Hamdani is a research scientist at the University of Luxembourg, where she focuses on integrating and managing heterogeneous data sources for cloud-based decision-making. Previously, she was a research intern at the same institution, contributing to Ontology-Driven Knowledge Management and Cloud-Edge AI, with three published papers. She also worked as a part-time software engineer at CareerBoosts in Quebec (2021–2025), specializing in Python, Azure DevOps, Docker, and test automation. She gained industry experience through internships at Qodexia (Paris), Sagemcom (Tunisia), and Tunisie Telecom, working on smart recruitment platforms, employee management systems, and server monitoring solutions using SpringBoot, Angular, and PostgreSQL. Her technical expertise spans full-stack development, DevOps, AI-driven applications, and cloud computing. She has contributed to major projects, including an adaptive human-computer interaction system, a job recommendation system, and a problem-solving platform, demonstrating her versatility in research and software engineering. 🚀🖥️🔍

🏆 Awards & Honors

Rania Hamdani has been recognized for her outstanding contributions to AI-driven cloud computing and operational research. She received excellence awards during her engineering studies at the National Higher School of Engineers of Tunis and was among the top-performing students in her Mathematics-specialized Baccalaureate. Her research papers in Ontology-Driven Knowledge Management and Cloud-Edge AI have been acknowledged in academic circles, contributing to the advancement of Industry 5.0 technologies. She has also earned multiple Microsoft certifications in cloud and AI fundamentals, reinforcing her technical expertise. As an active member of IEEE and the Youth and Science Association, she has been involved in technology outreach and innovation-driven initiatives. Her leadership in ENSIT Junior Enterprise as a project manager further showcases her ability to lead and contribute to tech communities. These recognitions highlight her dedication to research, software development, and cloud-based AI applications. 🏅📜🌟

🔬 Research Focus

Rania Hamdani’s research focuses on operational research, data management, cloud-edge AI, and Industry 5.0 applications. She specializes in ontology-driven knowledge management, exploring methodologies for integrating heterogeneous data sources to optimize cloud-based decision-making processes. Her work includes artificial intelligence, machine learning, reinforcement learning, and human-computer interaction systems. She has contributed to projects involving job recommendation systems, adaptive human-computer interaction platforms, and cloud-based problem-solving platforms. Rania is particularly interested in scalable cloud architectures, leveraging technologies like FastAPI, Kubernetes, Docker, and Azure DevOps to build efficient AI-powered solutions. Her research also integrates graph databases, Apache Airflow, and big data analytics for enhanced data processing. By combining AI and cloud computing, she aims to develop innovative, data-driven solutions for automation, decision support, and optimization in various industrial applications. Her expertise bridges the gap between theoretical research and real-world software engineering. ☁️🤖📊

 

Publication Top Notes

Adaptive human-computer interaction for industry 5.0: A novel concept, with comprehensive review and empirical validation

 

Ting Wei | Emotional Experience Design | Best Researcher Award

Dr. Ting Wei | Emotional Experience Design | Best Researcher Award

Lecturers at Wuhan Textile University, China

Dr. Ting Wei (born May 1992, China) is an expert in Industrial Design with a PhD from Shaanxi University of Science and Technology. He is a Lecturer at Wuhan Textile University and Design Director at JOYA Innovation Design Research Center. His research focuses on user experience design, HCI, service design, and innovation methods. Dr. Wei has published over 10 papers, including SCI, SSCI, and EI-indexed works. He has led 20+ design projects for top enterprises like Bosch, Dongfeng Renault, and China Mobile. He also mentors international design workshops. 📚🎭✍️

Publication Profile

Orcid

Education Background 🎓📚

Dr. Ting Wei pursued his academic journey in Industrial Design at Shaanxi University of Science and Technology. He completed his undergraduate degree (2011-2015), followed by a postgraduate degree (2015-2018) in Design. His passion for innovation and research led him to earn a PhD in Design (2019-2023) from the same institution. Throughout his academic career, Dr. Wei focused on user experience design, service design, and innovation methods, laying a strong foundation for his contributions to industrial design. His educational background has equipped him with expertise in design thinking and human-computer interaction (HCI). 🎨💡

Work Experience 🏢🎨

Since April 2018, Dr. Ting Wei has been serving as the Design Director at JOYA Innovation Design Research Center. In this role, he leads forward-thinking innovation strategies for emerging markets and consumer needs. He is responsible for conducting comprehensive user testing on new products and concepts to enhance user experience. Additionally, he provides systematic innovation development for new product categories and services, ensuring creative and practical design solutions. His expertise in design research, product innovation, and brand enhancement has contributed significantly to the growth and transformation of various industries. 🚀💡

Research Focus 🎯📊

Dr. Ting Wei’s research primarily focuses on human-computer interaction (HCI) 🤖💡, user experience design 🎨📱, and emotional regulation in driving behavior 🚗😠. His work explores multimodal interaction approaches to manage situational driving anger and service failure assessments in smart product consumption. He also investigates telecommuting experience design 🏡💻, cognitive load in remote work, and AI-based decision models. His studies integrate psychology, AI, and design thinking to improve user interaction with technology. His multidisciplinary research contributes to sustainable design solutions 🌱 and innovative service systems in both digital and physical environments. 🔍✨

Publication Top Notes

  • “A multimodal interaction-based approach to situational driving anger emotion regulation” (2025) | Expert Systems with Applications | [DOI: 10.1016/j.eswa.2025.127051]

  • “A service failure assessment model for smart product consumption experience based on customer perception” (2024) | Scientific Reports | [DOI: 10.1038/s41598-024-75283-7]

  • “A Multimodal Interaction Experience Design Approach for Negative Emotional Driving Situations” (2022) | AHFE International Conference | [DOI: 10.54941/ahfe1002005]

  • “A Telecommuting Experience Service Design Decision Model Based on BP Neural Network” (2022) | Psychology Research and Behavior Management | [DOI: 10.2147/prbm.s386089]

  • “Analysis of the Cognitive Load of Employees Working from Home and the Construction of the Telecommuting Experience Balance Model” (2022) | Sustainability | [DOI: 10.3390/su141811722]

Conclusion 🏆

Dr. Ting Wei is a strong candidate for the Best Researcher Award, given his high-quality publications, international collaborations, industrial contributions, and leadership in design innovation. His work bridges academia and industry, making a significant impact in user experience, HCI, and service design research.

 

 

Yanxia Jin | Genetics | Best Scholar Award

Yanxia Jin | Genetics | Best Scholar Award

Associate Professor at Hubei Normal University, China.

Dr. Yanxia Jin is a distinguished associate professor at Hubei Normal University, specializing in biomedical sciences, particularly in cancer treatment and tumorigenesis. Known for her dedication to both research and teaching, she actively mentors graduate students, fostering their growth in life sciences. Her work has received significant recognition through various prestigious awards and honors. Dr. Jin has contributed extensively to the field with over 38 SCI-indexed publications, including numerous first-author and corresponding author roles. Her leadership in high-impact research and commitment to academic excellence make her a valuable asset to the scientific and academic communities.

Publication Profile

Scopus

Educational Background

Dr. Jin has a robust academic foundation in biomedical sciences, which she has furthered through postdoctoral research at prominent institutions. Her postdoctoral studies at Zhongnan Hospital of Wuhan University and Hong Kong Baptist University allowed her to specialize in clinical medicine and traditional Chinese pharmacy. Her educational background has equipped her with a unique blend of interdisciplinary knowledge that she has applied throughout her research and teaching career. This solid academic and research training has set the groundwork for her impactful contributions to cancer research and the life sciences.

Experience

With years of experience as an academic mentor and researcher, Dr. Jin has become a pivotal figure at Hubei Normal University. She has not only led critical projects as Principal Investigator but also collaborated on nationally funded initiatives, such as those supported by the National Natural Science Foundation of China (NSFC) and the Hubei Province Natural Science Foundation. Her experience spans research project management, scientific publication, and graduate mentorship. Her work has established her as a leading expert in her field, contributing to advancements in cancer treatment and biomedical sciences.

Research Focus

Dr. Jin’s research focuses on understanding tumorigenesis and developing innovative cancer treatment approaches. Her work with selenium nanocomposites, biomarker identification, and anti-tumor compounds has shown promise in targeting lung cancer and leukemia. This specialization in molecular oncology and nanomedicine underlines her commitment to addressing pressing health challenges. Dr. Jin’s studies are driven by a goal to translate foundational research into clinical applications, reflecting her dedication to advancing treatment options and improving patient outcomes in oncology.

Awards and honors

Dr. Jin has received several notable awards, including recognition as both a Chutian Scholar and a Hong Kong Scholar, celebrating her contributions to biomedical research and education. Her accomplishments are further highlighted by her leadership in prestigious research projects funded by major foundations. These accolades underscore her dedication to her field and her impact on cancer research and biomedical sciences. Dr. Jin’s honors not only mark her as a researcher of high repute but also as a dedicated educator who inspires the next generation of scientists.

Conclusion

Dr. Yanxia Jin’s exemplary achievements, including her high-impact research, significant grant funding, and dedication to mentorship, make her an exceptional candidate for the Best Scholar Award. Her work on innovative cancer treatments and biomarkers exemplifies her commitment to addressing complex health challenges. With her ongoing dedication to expanding her research and mentorship, Dr. Jin is well-suited to receive this award, embodying both excellence in scholarship and significant contributions to the field of life sciences.

Publication Top Notes

Title: A novel selenium nanocomposite modified by AANL inhibits tumor growth by upregulating CLK2 in lung cancer
Authors: Zhang, Y., Chen, Y., Wang, B., Pan, J., Jin, Y.
Year: 2024
Citations: 0

Title: A diagnostic biomarker of acid glycoprotein 1 for distinguishing malignant from benign pulmonary lesions
Authors: Chen, Y., Zhang, Y., Huang, A., Pan, J., Jin, Y.
Year: 2023
Citations: 0

Title: Preparation and usage of nanomaterials in biomedicine
Authors: Zhang, Y., Ai, L., Gong, Y., Jin, Y.
Year: 2023
Citations: 3

Title: Overexpression of SERPINA3 suppresses tumor progression by modulating SPOP/NF-κB in lung cancer
Authors: Jin, Y., Zhang, Y., Huang, A., Wang, W., Pan, J.
Year: 2023
Citations: 3

Title: Alpha-1-antichymotrypsin as a novel biomarker for diagnosis, prognosis, and therapy prediction in human diseases
Authors: Jin, Y., Wang, W., Wang, Q., Raza, U., Gong, Y.
Year: 2022
Citations: 27

Title: Evaluation of prognostic staging systems of multiple myeloma in the era of novel agents
Authors: Shang, Y., Jin, Y., Liu, H., Hu, J., Zhou, F.
Year: 2022
Citations: 2

Title: Therapeutic Plateletpheresis in Patients With Thrombocytosis: Gender, Hemoglobin Before Apheresis Significantly Affect Collection Efficiency
Authors: Jiang, H., Jin, Y., Shang, Y., Gong, F., Zhou, F.
Year: 2021
Citations: 3

Title: Synergistic effects of AAGL and anti-PD-1 on hepatocellular carcinoma through lymphocyte recruitment to the liver
Authors: Ye, X., Wang, X., Yu, W., Xu, B., Sun, H.
Year: 2021
Citations: 4

Title: Shengxuening Extracted from Silkworm Excrement Mitigates Myelosuppression via SCF-Mediated JAK2/STAT3 Signaling
Authors: Ding, L., Tan, Y., Xu, L., Huang, T., Zhou, F.
Year: 2021
Citations: 8

salma ayari | Marketing | Best Researcher Award

salma ayari | Marketing | Best Researcher Award

ESCT at University of Tunis, Tunisia.

Salma Ayari is a Tunisian marketing expert specializing in digital marketing strategies and communication. With a career built on both academia and practical engagement, she brings innovative insights to the field. She has cultivated exceptional communication skills, conveying complex information effectively through her teaching and research roles. Known for her diligence, creativity, and adaptability, Ayari has a proven ability to handle high-pressure environments and diverse settings. Her commitment to continuous learning, combined with her advanced skills in time management, teamwork, and organization, underscores her qualifications for advanced marketing research and education in Tunisia and beyond.

Publication Profile

Scopus

Educational Background

Salma Ayari holds a Ph.D. in Marketing from Ecole Supérieure de Commerce de Tunis, University of Manouba, Tunisia. Her doctoral thesis, defended in 2020, investigates the influence of mental imagery on consumer engagement in online environments, earning a “Very Honorable” mention. She also completed her Master’s in Marketing Research at the same institution in 2014, focusing on mental imagery’s impact on consumer attitudes. Additionally, she earned a Bachelor’s degree in Applied Economics, specializing in International Finance, with honors in 2010, and earlier, a Bachelor’s in Economics and Management in 2006 from Ibn Abi Dhief High School.

Experience

Ayari has extensive teaching experience as a contractual assistant across various Tunisian universities, including the University of Tunis El Manar, University of Jendouba, and ESCT. Since 2017, she has taught a range of marketing courses, including digital marketing, product management, and service marketing. Her roles have also included curriculum design and supervision of final-year undergraduate marketing students, guiding them on topics like digital strategies, e-commerce, and the impact of social media on customer behavior. This blend of teaching, practical assignments, and student mentorship showcases her dedication to advancing marketing education and research.

Research Focus

Ayari’s research centers on the evolving digital marketing landscape, with particular emphasis on consumer engagement through online platforms, customer relationship management (CRM), and social media. Her work explores how mental imagery impacts user interactions on digital platforms and has further extended into areas like interactive and social media marketing, online advertising, and CRM applications. She has also supervised research on contemporary topics such as AI’s role in marketing, e-banking services, and the influence of social media influencers, demonstrating her commitment to investigating the intersection of digital technology and consumer psychology.

Awards and honors

The information provided does not list specific awards or honors that Salma Ayari has received. However, her academic achievements, such as receiving a “Very Honorable” mention for her Ph.D. thesis in marketing, signify recognition of her scholarly excellence within her institution. Additionally, her sustained roles as a contractual assistant across multiple universities, along with her mentorship of students in complex, modern marketing topics, reflect her professional credibility and dedication, which might have earned her informal honors within the academic and research communities.

Conclusion

Dr. Salma Ayari presents a strong case for the Best Researcher Award in her field, especially given her specialization in digital marketing, her dedication to student mentorship, and her academic teaching experience. Her research is timely and applicable, which is essential for impactful contributions in marketing. Focusing on strengthening her publication portfolio and international presence would further solidify her standing and enhance her visibility in the field.

Publication Top Notes

    • “Muslims’ reluctance to social media campaigns about organ donation: an exploratory study”
      • Authors: Nouira, O., Ayari, S.
      • Journal: Journal of Islamic Marketing
      • Year: 2024
      • Volume/Issue/Pages: 15(7), pp. 1706–1721
      • Citations: 0
    • “Understanding the dynamics of unfollowing behaviour on TikTok: implications for interactive marketing”
      • Authors: Ayari, S., Nouira, O., Oueslati, K.
      • Journal: Journal of Decision Systems
      • Year: 2024
      • Citations: 0
    • “A Bibliometric Analysis on Artificial Intelligence in Marketing: Implications for Scholars and Managers”
      • Authors: Oueslati, K., Ayari, S.
      • Journal: Journal of Internet Commerce
      • Year: 2024
      • Volume/Issue/Pages: 23(3), pp. 233–261
      • Citations: 1
    • “Exploring the causes to unfollow social media influencers: A qualitative study”
      • Authors: Ayari, S., Oueslati, K., Ben Yahia, I.
      • Journal: Journal of Human Behavior in the Social Environment
      • Year: 2024
      • Citations: 2
    • “Proposal of a Measurement Scale and Test of the Impacts on Purchase and Revisit Intention”
      • Authors: Ayari, S., Yahia, I.B.
      • Journal: Journal of Telecommunications and the Digital Economy
      • Year: 2023
      • Volume/Issue/Pages: 11(3), pp. 1–18
      • Citations: 0
    • “Impacts of immersion on loyalty to guesthouse websites: The simultaneous effect of 3d decor and avatars in a hyper-real environment”
      • Authors: Ayari, S., Ben Yahia, I.
      • Journal: Journal of Marketing Communications
      • Year: 2023
      • Citations: 2
    • “Measuring E-Browsing Behaviour and Testing its Impact on Online Immersion”
      • Authors: Ayari, S., Yahia, I.B., Debabi, M.
      • Journal: Journal of Telecommunications and the Digital Economy
      • Year: 2022
      • Volume/Issue/Pages: 10(2), pp. 111–125
      • Citations: 2
    • “A specific language for developing business process by refinement based on BPMN 2.0”
      • Authors: Ayari, S., Hlaoui, Y.B., Ayed, L.B.
      • Conference: 16th International Conference on Software Technologies, ICSOFT
      • Year: 2021
      • Pages: pp. 489–496
      • Citations: 0
    • “A grammar based approach to BPMN model semantic preservation using refinement”
      • Authors: Ayari, S., Hlaoui, Y.B., Ayed, L.B.
      • Conference: International Computer Software and Applications Conference
      • Year: 2019
      • Volume/Pages: 2, pp. 549–554
      • Citations: 1
    • “Towards an Automatic Verification of BPMN Model Semantic Preservation During a Refinement Process”
      • Authors: Hlaoui, Y.B., Ayari, S., Ayed, L.J.B.
      • Conference: Communications in Computer and Information Science
      • Year: 2019
      • Volume/Pages: 1077, pp. 397–420
      • Citations: 1

Hafida bouarfa | Computer Science | Excellence in Research

Mrs. Hafida bouarfa | Computer Science | Excellence in Research

Mrs. Hafida bouarfa, Université de Blida, Algeria

Professor at the Data Processing Department, University of Blida, Algeria, Hafida Bouarfa holds a Ph.D. in Data Processing and a Magister in Information Systems from H.E.C. Montreal. With extensive research on virtual organizations, she has published numerous articles in international journals and conferences, addressing topics like knowledge management and seismic evaluations. Passionate about education, she mentors students and collaborates on innovative projects. Married with two children, she balances her professional and family life while contributing significantly to the field of data processing. 📚✉️

Publication Profile

Google Scholar

Educational Background

Mrs. Hafida Bouarfa has an impressive educational background in Data Processing. She earned her Ph.D. in Data Processing with a focus on Information Systems from ESI (ex.INI) in Algiers, Algeria, in November 2004. Prior to that, she obtained her Magister in Information Systems from H.E.C. Montréal, Canada, in December 1991. Her journey began with an Engineer diploma in Data Processing, also from ESI (ex.INI) in September 1988. She laid a strong foundation with a General Certificate of Education in Mathematics in June 1983. 🎓📚

Research Focus

Mrs. Hafida Bouarfa’s research primarily focuses on the integration of advanced computing techniques in various domains. Her work includes big data analytics 📊, emphasizing decision-making processes and enhancing data-driven strategies. She explores ontology matching 🤖 and neural networks for information systems, aiming to improve knowledge management and retrieval. Additionally, her research addresses Internet of Things (IoT) 🔗 security through physical unclonable functions (PUFs) and mutual authentication protocols, contributing to safe and efficient communication networks. Bouarfa’s contributions to smart cities 🏙️ and fuzzy logic 🌫️ applications reflect her commitment to innovative solutions in technology and information management.

 

Publication Top Notes

  • A new model for integrating big data into phases of decision-making process | Cited by: 49 | Year: 2019 📊
  • Ontology matching using neural networks: survey and analysis | Cited by: 27 | Year: 2018 🤖
  • A survey on silicon PUFs | Cited by: 24 | Year: 2022 🔍
  • PUF-based mutual authentication and session key establishment protocol for IoT devices | Cited by: 23 | Year: 2023 🔐
  • Predicting students performance using decision trees: Case of an Algerian University | Cited by: 22 | Year: 2017 🎓
  • A new collaborative clustering approach for the Internet of vehicles (CCA-IoV) | Cited by: 17 | Year: 2020 🚗
  • Deep embedding learning with auto-encoder for large-scale ontology matching | Cited by: 15 | Year: 2022 🔗
  • Extension of commonKads for virtual organizations | Cited by: 15 | Year: 2003 🏢
  • Fuzzy probabilistic ontology approach: a hybrid model for handling uncertain knowledge in ontologies | Cited by: 13 | Year: 2019 🌫️
  • A new supervised learning based ontology matching approach using neural networks | Cited by: 12 | Year: 2019 📚